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Abstract

In this paper we describe the exiension of the CAPO
parallelization support tool to support multilevel
parallelism based on OpenMP directives. CAPO
generates OpenMP  directives  with  extensions
supported by the NanosCompiler 1> allow for directive
nesting and definition of thread groups. We report first
results for several benchmark c(odes and one full
application that have been par.llelized using our
system.

1 Introduction

Paralle) architectures are an inst umental tool for the
execution of computational intunsive applications.
Simple and powerful programming models and envi-
ronments are required to develop and tune such parallel
applications. Current programming models offer either
library-based implementations (such as MPI [16]) or
extensions to sequential languages (directives and lan-
guage constructs) that express the available parallelism
in the application, such as OpenMLI" [ 19].

OpenMP was introduced as ar industrial standard
for shared-memory programming with directives. Re-
cently, it has gained significant popularity and wide
compiler support. However, relevant performance is-
sues must still be addressed which concern
programming modcl design as well as implementation.
In addition to that, extensions to the standard are being
proposed and evaluated in order t» widen the applica-
bility of OpenMP to a broad class of paraliel
applications without sacrificing po-tability and simplic-
ity.

What has not been clearly addressed in OpenMP is
the exploitation of multiple levels parallelism. The lack
of compilers that are able to exploit further parallelism
inside a parallel region has been tf e main cause of this
problem, which has favored the practice of combining
several programming models to address scalability of
applications to exploit multiple levels of parallelism on
a large number of processors. Thz nesting of parallel
constructs in OpenMP is a featurc that requires atten-
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tion in future releases of OpenMP compilers. Some
research platforms, such as the OpenMP NanosCom-
piler [9], have been developed to show the feasibility
of exploiting nested parallelism in OpenMP and to
serve as testbeds for new extensions in this direction.
The OpenMP NanosCompiler accepts Fortran-77 code
containing OpenMP directives and generates plain For-
tran-77 code with calls to the NthLib thread library
[17] (currently implemented for the SGI Origin). In
contrast to the SGI MP library, NthLib allows for mul-
tilevel parallel execution such that inner parallel
constructs are not being serialized. The NanosCompiler
programming model supports several extensions to the
OpenMP standard to allow the user to control the ailo-
cation of work to the participating threads. By
supporting nested OpenMP directives the NanosCom-
piler offers a convenient way to multilevel parallelism.

In this study, we have extended the automatic paral-
lelization tool, CAPO, to allow for the generation of
nested OpenMP parallel constructs in order to support
multilevel shared memory parallelization. CAPO
automates the insertion of OpenMP directives with
nominal user interaction to facilitate parallel process-
ing on shared memory parallel machines. It is based on
CAPTools [11], a semi-automatic parallelization tool
for the generation of message passing codes, developed
at the University of Greenwich.

To this point there is little reported experience with
shared memory multilevel parallelism. By being able
to generate nested directives automatically in a reason-
able amount of time we hope to be able to gain a better
understanding of performance issues and the needs of
application programs when in comes to exploiting mul-
tilevel parallelism.

The paper is organized as follows: Section 2 sum-
marizes the NanosCompiler extensions to the OpenMP
standard. Section 3 discusses the extension of CAPO to
generate multilevel parallel codes. Section 4 presents
case studies on several benchmark codes and one full
application.



2 The NanosCompiler

OpenMP provides a fork-and-join execution model
in which a program begins execution as a single proc-
ess or thread. This thread executes sequentially untii a
PARALLEL construct is found. At this time, the thread
creates a team of threads and it becomes its master
thread. All threads execute the statements lexically
enclosed by the parallel construc:. Work-sharing con-
structs (DO, SECTIONS and SIN3LE) are provided to
divide the execution of the erclosed code region
among the members of a team. All threads are inde-
pendent and may synchronize at the end of each work-
sharing construct or at specific points (specified by the
BARRIER directive). Exclusive e»ecution mode is also
possible through the definition of CRITICAL and
ORDERED regions. If a thread in a team encounters a
new PARALLEL construct, it creates a new team and it
becomes its master thread. OpenMP v2.0 provides the
NUM_THREADS clause to restiict the number of
threads that compose the team.

The NanosCompiler extensior to multilevel paral-
lelization is based on the concept of thread groups. A
group of threads is composed of a subset of the total
number of threads available in the¢ team to run a paral-
lel construct. In a parallel construct, the programmer
may define the number of groups and the composition
of each one. When a thread in the current team encoun-
ters a PARALLEL construct defining groups, the thread
creates a new team and it becon.es its master thread.
The new team is composed of as many threads as the
number of groups. The rest of the threads is used to
support the execution of nested parallel constructs. In
other words, the definition of groups establishes an
allocation strategy for the inner ievels of parallelism.
To define groups of threads, the NanosCompiler sup-
ports the GROUPS clause extension to the PARALLEL
directive.

C$OMP PARALLEL GROUPS (gspec)

C$SOMP END PARALLEL

Different formats for the GROUPS clause argument
gspec are allowed [10]. The simplest specifies the
number of groups and performs an equal partition of
the total number of threads to the :roups:

gspec = ngroups

The argument ngroups specifies the number of
groups to be defined. This format assumes that work is
well balanced among groups and therefore all of them
receive the same number of threads to exploit inner

levels of parallelism. At runtime, the composition of
each group is determined by equally distributing the
available threads among the groups.

gspec = ngroups, weight

In this case, the user specifies the number of groups
{(ngroups) and an integer vector (weight) indicat-
ing the relative weight of the computation that each
group has to perform. From this information and the
number of threads available in the team, the threads are
allocated to the groups at runtime. The vector weight
is allocated by the user and its values are computed
from information available within the application itself
(for instance iteration space, computational complex-

ity).

3 The CAPC Parallelization Support Tool

The main goal of developing parallelization sup-
port tools, is to eliminate as much of the tedious and
sometimes error-prone work that is needed for manual
parallelization of serial applications. With this in mind,
CAPO [13]) was developed to automate the insertion of
OpenMP compiler directives with nominal user inter-
action. This is achieved largely by use of the very
accurate interprocedural analysis from CAPTools [11]
and also benefits from a directive browser to allow the
user to examine and refine the directives automatically
placed within the code. CAPTools provides a fully
interprocedural and value-based dependence analysis
engine [14] and has successfully been used to parallel-
ize a number of mesh-based applications for distributed
memory machines.

3.1 Single level parallelization

The single loop level parallelism automatically ex-
ploited in CAPO can be defined by the following three
stages (see [13] for more details of these stages and
their implementation):

1) Identification of parallel loops and parallel re-
gions — this includes a comprehensive breakdown of
the different loop types, such as serial, parallel includ-
ing reductions. and pipelines. The outermost parallel
loops are considered for parallelization so long as they
provide sufficient granularity. Since the dependence
analysis is interprocedural, the parallel regions can be
defined as high up in the call tree as possible. This
provides an efficient placement of the directives.

2) Oprimization of parallel regions and parallel
loops — the fork-and-join overhead (associated with
starting a parallel region) and the synchronizing cost
are greatly lowered by reducing the number of parallel



regions required. This is achieved by merging together
parallel regions where there is no violation of data us-
age. In addition, the synchronization between
successive parallel loops is removed if it can be proved
that the loops can correctly execute asynchronously
(using the NOWAIT clause).

3) Code transformation and insertion of OpenMP
directives — this includes the search for and insertion of
possible THREADPRIVATE common blocks. There is
also special treatment for private variables in non-
threadprivate common blocks. If there is a usage con-
flict then the routine is cloned and the common block
variable is added to the argumen: list of the cloned
routine. Finally, the call graph is traversed to place
OpenMP directives within the codz. This includes the
identification of necessary variahle types, such as
SHARED, PRIVATE, and REDUCT ION.

3.2 Extension to multilevel parallelization

Our extension to OpenMP multilevel parallelism is
based on parallelism at different lcop nests. Multilevel
parallelism can also be exploited vith task paralielism
but this is not considered, partly because task parallel-
ism is not well defined in the current OpenMP
speciftcation. Currently, we limit cur approach to only
two-level loop parallelism, which is of more practical
" use. The approach to automatical:y exploit two-level
parallelism is extended from the s ngle level paralleli-
zation and is illustrated in Figure 1. Besides the data
dependence analysis in the beginning he approach can
be summarized in the following four steps.

1) First-level loop analysis. This is essentially the
combination of the first two stages in the single level
parallelization where parallel loops and parallel regions
are identified and optimized at the outermost loop
level.

Serial Code

Data Dependence Analysis

Y

First Level Loop Analysis

Second Level Loop Analysis

¥

Second Level Directive Insertion

e ] # ............. -

First Level Directive Insertion

Paralle] Code

Figure 1: Steps in multilevel parallelization

2) Second-level loop analysis. This step involves
the identification of parallel loops and parallel regions
nested inside the parallel loops that were identified in
Step 1. These parallel loops and parallel regions are
then optimized as before but limited to the scope de-
fined by the first level.

3) Second-level directive insertion. This includes
code transformation and OpenMP directives insertion
for the second level. The step performed before insert-
ing any directives in the first-level is to ensure a
consistent picture is maintained for any variables and
codes that may be changed or introduced during the
code transformation.

4) First-level directive insertion. Lastly code trans-
formation and OpenMP directives insertion are
performed for the outer level parallelization. All the
transformations of the last stage of the single level par-
allelization are being performed, with the exception
that we disallow the THREADPRIVATE directive.
Compared to single level parallelization, the two-level
parallelization process requires the additional steps
indicated in the dash box in Figure 1.

3.3 Implementation consideration

In order to maintain consistency during the code
transformations that occur during the parallelization
process we need to update data dependencies properly.
Consider the example, where CAPO transforms an
array reduction into updates to a local variable. This is
followed by an update to the global array in a
CRITICAL section to work around the limitation on
reduction in OpenMP v1.x. The data dependence graph



needs to be updated to reflect the change due to this
transformation, such as associating dependence edges
related to the original variable to the: local variable and
adding new dependences for the loc 1l variable from the
local updates to the global update Performing a full
data dependence analysis for the modified code block
is another possibility but this would not take advantage
of the information already obtaincd from the earlier
dependence analysis.

When nested parallel regions ure considered, the
scope of the THREADPRIVATE directive is not clear
any more, since a variable may be tareadprivate for the
outer nest of parallel regions but shared for the inner
parallel regions, and the directive cinnot be bound to a
specific nest level. The OpenMP spz=cification does not
properly address this issue. Our solution is to disallow
the THREADPRIVATE directive when nested parallel-
ism is considered and treat any private variables
defined in common blocks by a special transformation
as mentioned in Section 3.1.

The scope of the synchronizatic n directives shouid
be carefully followed. For example. the MASTER direc-
tive is not allowed in the extent of a PARALLEL DO.
This changes the way a software pipeline (see [13] for
further explanation) can be implemented if it is nested
inside an outer parallel loop.

When implementing a pipeline. the outer loop needs
to be considered as well. This is il:ustrated by the fol-
lowing example. Assume we have a nest containing
two loops:

DO K=1,NK

DO J=2,NJ
A(J,K) = A{(J,K) + u{(J-1,K)

The outer loop K is parallel and the inner loop J can be
set up with a pipeline. After insert:ng directives at the
second level to set up the pipeline, 've have

1$OMP PARALLEL
DO K=1,NK
!..point-to-point sync directive

A(J,K) = A(J,K) + Aa(J-1,K)

The implementation of the point-tc -point synchroniza--

tion with directives is illustrated in Section 4.2. In
order to parallelize the K loop at the outer level, we
need to first transform the loop into a form such that
the outer-level directives can be aided. It is achieved
by explicitly calculating the K-losp bound for each
outer-level thread as shown in the {Hllowing codes:

1SOMP PARALLEL DO GROUPS (ngroups)
DO IT=1,omp_get num threads()
CALL calc_bound(IT, 1,NK,
> low,high)

tSOMP PARALLEL
DO K=low,high
!..point-to-point sync directive
'SOMP DO
DO J=2,NJ
A(J,K) = A{(J,K) + A(J-1,K)

The function “calc_bound” calculates the K loop
bound (Low, high) for a given IT (the thread num-
ber) from the original K loop limit. Only then are the
first-level directives added to the IT loop (instead of
the K loop). The method is not as elegant as one would
prefer, but it points to some of the limitations with the
nested OpenMP directives. In particular we would not
be able to set up a two-dimensional pipeline, since it
would involve synchronization of threads from two
different nest levels. We will discuss the problem of
two-dimensional pipelining in one of our case studies
in Section 4.2.

One of the contributions by the NanosCompiler to
support nested directives is the GROUPS clause, which
can be used to define the number of thread groups to be
created at the beginning of an outer-nest parallel re-
gion. In our implementation, the GROUPS directive
containing a single shared variable ‘ngroups’ is gen-
erated for all the first-level parallel regions. The
ngroups variable is placed in a common block and
can be defined by the user at run time. Although it
would be better to generate the GROUPS clause with a
weight argument based on different workloads of
paralie] regions, this is not considered at the moment.

4 Case Studies

In this section we show examples for successful and
not so successful automatic mulitlevel parallelization.
We have parallelized the three application benchmarks
(BT, SP, and LU) from the NAS Parallel Benchmarks
[4] and the ARC3D [21] application code using the
CAPO muliilevel paralleiization feature and examined
its effectiveness.

In each of our experiments we generate nested
OpenMP directives and use the NanosCompiler for
compilation and building of the executables. As dis-
cussed in Sections 2 and 3, the nested parallel code
contains the GROUPS clause at the outer level. Accord-
ing to the OpenMP standard, the number of executing
threads can be specified at runtime by the environment
variable OMP_NUM_THREADS. We introduce the envi-
ronment variable NANOS_GROUPS and modify the
source code to have the main routine check the value
of this variable and set the argument to the GROUPS
clause accordingly. This allows us to run the same ex-
ecutable not only with different numbers of threads,
but also with different numbers of groups. We compare



the timings for different numbers of groups to each
other. Note that single level parallelization of the outer
Joop corresponds to the case that the number of execut-
ing threads is equal to the number of groups. i.e. there
is only one thread in each group. We compare these
timings to those resulting from ccmpilation with the
native SGI compiler, which suppaorts only the single
level OpenMP parallelization and :erializes inner par-
allel loops.

The timings were obtained on an SGI Origin 2000
with R12000 CPUs, 400MHz clock, and 768MB local
memory per node.

4.1 Successful multilevel parallelization: the
BT and SP benchmarks

The NAS Parallel Benchmarks BT and SP are both
simulated CFD applications with a similar structure.
They use an implicit algorithm to solve the 3D com-
pressible Navier-Stokes equations The x, y, and z
dimensions are decoupled by usagz of an Alternating
Direction Implicit (ADI) factorizat:on method. In BT,
the resulting systems are block-tridiagonal with 5x5
blocks. The systems are solved sequentially along each
dimension. SP uses a diagonalization method that de-
couples each block-tridiagonal system into three
independent scalar pentadiagonal systems that are
solved sequentially along each dimension.

A study about the effects of siagle level OpenMP
parallelization of the NAS Parallel Benchmarks can be
found in [12]. In our experiments we started out with
the same serial implementation of the codes that was
the basis for the single level OpenMP implementation
as described in [12]. We ran class A (64x64x64 grid
points), B (102x102x102 grid points), and C
(162x162x 162 grid points) for the BT and SP bench-
marks. As an example we show timings for problem
class A for both benchmarks in Figure 2.

BT Class A (Problem size 64x64x64)

a SG!OpenmP
= |8 Nanos Outer
.~ {0ONanos Minimal

Time in seconds
=i

TR O

Number of threads

SP Class A (Problem Size 64x64x64)

0 SGi OpenMP
® Nanos Outer
O Nanos Minimat

Time in Seconds

Number of Threads

Figure 2: Timing results for class A benchmarks.

The programs compiled with the SGI OpenMP
compiler scale reasonably well up to 64 threads, but do
not show any further speed-up if more threads are be-
ing used. For a small number of threads (up to 64), the
outer level parallel code generated by the Nanos Com-
piler runs somewhat slower than the code generated by
the SGI compiler, but its relative performance im-
proves with increasing number of threads. When
increasing from 64 to 128 threads, the multilevel paral-
lel code still shows a speed-up, provided the number of
groups is chosen in an optimal way. We observed a
speed-up of up to 85% for 128 threads. In Figure 3 we
show the speed-up resulting from nested parallelization
for three problem classes of the SP and BT bench-
marks. We denote by

e SGI OpenMP: the time for outer loop paralleli-

zation using just the native SGI compiler,

e Nanos Outer: the time for outer loop paralleliza-

tion using the NanosCompiler,

e Nanos Minimal: the minimal time for nested

parallelization using the NanosCompiler.

For the BT benchmark CAPO parallelized 28 loops,
13 of which were suitable for nested parallelization.



For the SP benchmark CAPO para lelized 31 loops, 17
of which were suitable for multilevel parallelism. In
both benchmarks the most time consuming loops are
parallelized in two dimensions. All of the nested paral-
lel loops are at least triple nested. The structure of the
loops is such that the two outer most loops can be par-
allelized. The inner parallel loops =nclose one or more
inner loops and contain a reasonasly large amount of
computational work.

The reason that multilevel parallelism has a positive
effect on the performance of these loops is mainly due
to the fact that load balancing be'ween the threads is
improved. For class A, for example, he number of it-
erations is 62. If only the outer loop is parallelized,
using more than 62 threads will r-ot improve the per-
formance any further. In the case of 64 threads, 2 of
them will be idling. If, however, the second loop level
is also parallelized, all 64 thread: can be put to use.
Our experiments show that by choosing the number of
groups too small, the performance will actually de-
crease. Setting the number of groups to 1 effectively
moves the parallelism completely to the inner loop,
which will in most cases be less efficient than parallel-
izing the outer loop.

In Table 1 we show the maxim.l and minimal num-
ber of iterations (for class A) of the inner parallel loop
that a thread has to execute, depending on the number
of groups.

# Groups Max # Iters | Min # Iters
64 62 0

32 62 31

16 64 45

8 64 49

4 64 1 45

Table 1: Thread workload for the class A prob-
lems BT and SP.

To give a flavor of how the performance of the mul-
tilevel parallel code depends on the grouping of threads
we show timings for the BT benchmark on 64 threads
and varying number of groups in 'igure 4. The timings
indicate that good criteria to choose the number of
groups are:

o Efficient granularity of the parallelism, i.e., the
number of groups has to be sufficiently small. In
our experiments we observe that the number of
groups should not be smalle than the number of
threads within a group.

e The number of groups has to be large enough to
ensure a good balancing of work among the
threads.

BT Benchmark with 64 Threads

o
o
\,

Nanos Outer/ Nancs Nested
o
o

Clags W Ciass A Class B Class €
Benchmark Class

Figure 4: Timings of BT with varying number of
thread groups.

4.2 The need for OpenMP extensions: the LU
benchmark
The LU application benchmark is a simulated CFD

application that uses the symmetric successive over-
relaxation (SSOR) method to solve a seven band

BT Speed-up with Nested Parallellzation

oClass A
|Class B
OClass C

SGI OpenMP/Nanos Minimal

Number of Threads

SP Speed-up with Nested Parallelization

k]
E
£
=
E DClass A
E mCiass B
3 DClass C
§
8.
=]
o]
»

Number of Threads

Figure 3: Speed-up due to nested parallelism.



block-diagonal system resulting from finite-difference
discretization of the 3D compressible Navier-Stokes
equations by splitting it into block lower and block
upper triangular systems.

As starting point for our tests we choose the pipe-
lined implementation of the parallel SSOR algorithm,
as described in [12]. The example below shows the
loop structure of the lower-triangular solver in SSOR.
The lower-triangular and diagonal systems are formed
in routine JACLD and solved in routine BLTS. The
index K corresponds to the third coordinate direction.

DO K = KST, KEND
CALL JACLD (K)
CALL BLTS (K)

END DO

SUBROUTINE BLTS

DO J = JST, JEND
Loop_Body (J,K)

END DO

RETURN

END

To set up a pipeline for the outer loop, thread 0
starts to work on its first chunk of data in K direction.
Once thread O finishes, thread 1 can start working on
its chunk for the same K and, in the: meantime, thread 0
moves on to the next K. CAPO detects such opportuni-
ties for pipelined parailelism. The directives generated
by CAPO to implement the pipeline for the outer loop
are shown in Figure 5.

1$OMP PARALLEL PRIVATE (K, iam, numt)
iam = omp_get_thread_num()
numt = omp_get_num_threads ()
isync(iam) = 0
1 $OMP BARRIER
DO K = KST, KEND
CALL JACLD (K)
CALL BLTS (K)
END DO
1$OMP END PARALLEL
SUBROUTINE BLTS (K)

if (iam .gt. 0 .and.
iam .lt. numt) then
do while(isync(iam-1) .eqg. 0)
{$OMP FLUSH(isync)
end do
isync(iam-1) = 0
{1 $OMP PFLUSH(isync)
end if
1$OMP DO
DO J = JST, JEND
Loop_Body (J,K)
END DO
1$OMP END DO nowait
if (iam .lt. numt) then
do while (isync(iam) .eq. 1)}
1$OMP FLUSH(isync)
end do
isync (iam) =1
1 3OMP FLUSH(isync)
endif
RETURN
END

Figure 5: The one-dimensional parallel pipeline
implemented in LU.

The K loop is placed inside a parallel region. Two
OpenMP library functions are called to obtain the cur-
rent thread identifier (iam) and the total number of
threads (numt). The shared array isync is used to
indicate the availability of data from neighboring
threads. Together with the FLUSH directive in a
WHILE loop it is used to set up the point-to-point syn-
chronization between threads. The first WHILE
ensures that thread iam will not start with its slice of
the J loop before the previous thread has updated its
data. The second WHILE is used to signal data avail-
ability to the next thread.

The performance of the pipelined parallel imple-
mentation of the LU benchmark is discussed in [12].
The timings show that the directive based implementa-
tion does not scale as well as a message passing
implementation of the same algorithm. The cost of
pipelining results mainly from wait during startup and
finishing. The message-passing version employs a 2
dimensional pipeline where the wait cost can be greatly




reduced. The use of nested OpenMP directives offers
the potential to achieve similar sculability to the mes-
sage passing implementation.

There is, however, a problem in setting up a direc-
tive-based two-dimensional pipeline. The structure of
the Loop_Body depicted in Figure 3 looks like:

ILOW, IHIGH

,J)= VM, I,.,K-1}
+ V(M,I,J-1,K)
+ V(M,I-1,J,K)

END DO

pOM=1, 5
V{M,I,J,K)= TV(M,,J)
END DO
END DO

If both J- and I-loop are to be parallelized employing
pipelines, a thread would need to be able to synchro-
nize with its neighbor in the J- and I-directions on
different nesting levels. Parallelizing the I-loop with
OpenMP directives introduces an inner parallel region,
as shown below (see also the discussion in Section 3.3)

1$OMP PARALLEL
synchronizationl
1$OMP DO
DO JT =
1$OMP PARALLEL €<
DO J = JLOW, JHIGH
Synchronization2
1S$OMP DO
DO I = ILOW, IHIGH
END DO
1SOMP END DO NOWAIT
Synchronization2
END DO

1$OMP END PARALLEL €
END DO

1SOMP END DO NOWAIT
synchronizationl

The end of the inner parallel regicn forces the threads
to join and destroys the multilevel »ipeline mechanism.
In order to set up a 2-dimensiona! pipeline we would
need to have the possibility of neited OMP DO direc-
tives within the same parallel region. The
NanosCompiler team is currently implementing
OpenMP extensions to address this problem. A brief
overview on this work is given in Section 6.

4.3 Unsuitable loop structure in ARC3D

ARC3D uses an implicit scheme to solve Euler and
Navier-Stokes equations in a three-dimensional (3D)
rectiiinear grid. The main component is an ADI solver,
which results from the approximate factorization of
finite difference equations. The actual implementation
of the ADI solver (subroutine STEPF3D) in the serial
ARC3D is illustrated in Figure 6. It is very similar to
the SP benchmark.

BC Boundary Condition
|
RHS Explicit Right-Hand-Side
I
FILTER3D Antificial Dissipation Terms
I
TKINV (X) For each L:
I form LHS for (J,K) plane
X1 solver VPENTA3 -- solve first 3
Y VPENTA --solve 4 & 5§
NPINV

! (Y) For each L:
ETA solver N form LHS for (K.J) plane
| VPENTAD3 -- solve first 3

NPINV VPENTA --solve4 & 5
|

ZETA solver
T (Z) For each K:

TK form LHS for (L..J) plane

VPENTAZ3 -- solve first 3
VPENTA --solve 4 & 5

I
update solution

Figure 6: The schematic flowchart of the ADI
solver in ARC3D.

For each time step, the solver first sets up boundary
conditions (BC), forms the explicit right-hand-side
(RHS) with artificial dissipation terms (FILTER3D),
and then sweeps through three directions (X, Y and Z)
to update the 5-element fields, separately. Each sweep
consists of forming and solving a series of scalar pen-
tadiagonal systems in a two-dimensional plane one at a
time. Two-dimensional arrays are created from the 3D
fields and are passed into the pentadiagonal solvers
(VPENTA3 for the first 3 elements and VPENTA for
the 4 and 5th elements, both originally written for vec-
tor machines), which perform Gaussian eliminations.
The solutions are then copied back to the three-
dimensional residual fields. Between sweeps there are



routines (TKINV, NPINV and TX) to calculate and
solve small, local 5x5 eigensystems. Finally the solu-
tion is updated for the current time step.

We ran ARC3D for two different problem sizes. In
both cases the performance dropped by 10% to 70%
when the number of groups was sraaller than the num-
ber of threads, i.e. when multilevel parallelism was
used. Example timings for both problem sizes and 64
threads are given in Figure 7. The timings for outer
level parallelism are given in Figurz 8.

Even though the time consuming solver in ARC3D
is similar to the one in the SP benchmark, our approach
to automatic multilevel parallelization was not success-
ful. For ARC3D CAPO identified 58 parallel loops, 35
of which were suitable for nested parallelization. 19 of
the 35 nested parallel loops had very little work in the
inner parallel loop and inefficient memory access. An
example is shown below.

1$OMP PARALLEL DO GROUPS (ngroups)
1$0MP& PRIVATE (AR, BR,CR, DR, ER)
DO K = KLOW, KUP

1$OMP PARALLEL DO
DOL = 2, LM

DO J 2, JM
AR(L,J) = AR(L,J) + V(J,K,L)
BR(L,J) = BR(L,J) + V(J,K,L)
CR(L,J) = CR{L,J) + V(J,K,L)
DR(L,J) = DR(L,J) + V(J,K,L)
ER(L,J) = ER(L,J) + V(J,K,L)
CR(L,J) = CR(L,J) + 1.
END DO
END DO
END DO

Parallelizing the L loop increases the execution time of
the loop considerably due to a high number of cache
invalidations. The occurrence of many such loops in
the original ARC3D code nullifizs the benefits of a
better load balance and we see nc speed-up for multi-
level parallelism.

ARC3D Nested Paralielism Timings
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Figure 7: Timings of ARC3D with varying num-
ber of thread groups for a given total of 64 threads.
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Figure 8: Timings from the outer level paralleli-
zation of ARC3D.

The example of ARC3D shows that parallelizing all
loops in an application indiscriminately on two levels
with the same name number of groups and the same
weight for each group may actually increase the execu-



tion time. At the least we will need to extend the
CAPO directives browser to allow the user inspection
of all multilevel parallel loops ard possibly perform
code transformations or disable nested directives.

5 Related work

There are a number of comm:ercial and research
parallelizing compilers and tools that have been devel-
oped over the years. Some of the more notable ones
include Superb [24]. Polaris [6], Suif [23] KATI's tool-
kit [15], VAST/Parallel [20], and FORGexplorer [1]

Regarding OpenMP directives. most current com-
mercial and research compilers mainly support the
exploitation of a single level of parallelism and special
cases of nested parallelism (e.;. double perfectly
nested loops as in the SGI MIPSpro compiler). The
KAVIntel compiler offers, through a set of extensions
to OpenMP, work queues and an interface for inserting
application tasks before execution (WorkQueue pro-
posal [22]). At the research level, the Illinois--Intel
Multithreading library {7} provides a similar approach
based on work queues. In both cuses, there is no ex-
plicit (at the user or compiler level) control over the
allocation of threads so they do nct support the logical
clustering of threads in the multile vel structure, which
we think is necessary to allow gond work distribution
and data locality exploitation.

Compagq recently announced the support of nested
parallel region by its Fortran compiler for Tru64 sys-
tems [3]. The Omni compiler [18]. which is part of the
Real World Computing Project, ulso supports nested
parallelism through OpenMP direc:ives.

There are a number of papers reporting experiences
in combining multiple programm:ng paradigms (such
as MPI and OpenMP) to exploit multiple levels of par-
allelism. However, there is not much experience in the
parallelization of applications with multiple levels of
parallelism simply using OpenMF. Implementation of
nested parallelism by means of ccntrolling the alloca-
tion of processors to tasks in a single-level parallelism
environment is discussed in [S]. The authors show the
improvement due to nested parallelization.

Other experiences using nested OpenMP directives
with the NanosCompiler are repor-ed in [2]. In the ex-
amples discussed there, the direciives have not been
automatically generated.

6 Project Status and Future¢ Plans

We have extended the CAPO automatic paralleliza-
tion support tool to automaticaily generate nested
OpenMP directives. We used thc NanosCompiler to
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evaluate the efficiency of our approach. We conducted
several case studies which, showed that:

¢ Nested parallelization was useful to improve load
balancing.

e Nested parallelization can be counter productive
when applied without considering workload dis-
tribution and memory access within the loops.

¢ Extensions to the OpenMP standard are needed to
implement nested parallel pipelines.

We are planning to enhance the CAPO directives
browser to allow the user to view loops, which are
candidates for nested parallelization. Nested paralleli-
zation may then be turned on selectively and necessary
loop transformations can be performed. We are also
considering the automatic determination of an appro-
priate number of groups and the assignment of
different weights to the groups. Currently CAPO is
also being extended to support hybrid parallelism
which combines coarse-grained parallelization based
on message passing and fine-grained paralielization
based on directives.

OpenMP extensions are currently being imple-
mented in the framework of the NanosCompiler to
easily specify precedence relations causing pipelined
executions. These extensions are also valid in the scope
of nested parallelism. They are based on two compo-
nents:

¢ The ability to name work-sharing constructs (and
therefore reference any piece of work coming out
of it).

o The ability to specify predecessor and successor
relationships between named work-sharing con-
structs (PREC and SUCC clauses).

This avoids the manual transformation of the loop
to access data slices and manual insertion of synchro-
nization calls. From the new directives and clauses, the
compiler automatically builds synchronization data
structures and insert synchronization actions following
the predecessor and successor relationships defined [8].
These relationships can cross the boundaries of parallel
loops and therefore avoid the problems that CAPO
currently has to implement two-dimensional pipelines.

We plan to conduct further case studies to compare
the performance of parallelization based on nested
OpenMP directives with hybrid and pure message
passing parallelism.
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